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By using the Wang-Landau flat-histogram Monte Carlo �MC� method for very large lattice sizes never
simulated before, we show that the phase transition in the frustrated Heisenberg stacked triangular antiferro-
magnet is of first order, contrary to results of earlier MC simulations using old-fashioned methods. Our result
lends support to the conclusion of a nonperturbative renormalization group performed on an effective Hamil-
tonian. It puts an end to a 20-year-long controversial issue.
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I. INTRODUCTION

When a spin cannot fully satisfy energetically all the in-
teractions with its neighbors, it is “frustrated.” This situation
occurs when the interactions are in competition with each
other or when the lattice geometry does not allow one to
satisfy all interaction bonds simultaneously as seen, for ex-
ample, in the triangular lattice with an antiferromagnetic in-
teraction between the nearest neighbors. The effects of the
frustration in spin systems have been extensively investi-
gated during the last 30 years. Frustrated spin systems are
shown to have unusual properties such as large ground-state
�g.s.� degeneracy, interesting g.s. symmetries, successive
phase transitions with a complicated nature, and partially dis-
ordered phase, reentrance and disorder lines. Frustrated sys-
tems still constitute at present a challenge for theoretical,
experimental, and simulational methods. For recent reviews,
the reader is referred to Ref. �1�.

The nature of the phase transition in strongly frustrated
spin systems has been a subject of intensive investigations in
the last 20 years. Theoretically, these systems are excellent
testing grounds for theories and approximations. Many well-
established methods such as renormalization group �RG�,
high- and low-temperature series expansions, etc., often
failed to deal with these systems. Experimentally, data on
different frustrated systems show a variety of possibilities:
first-order or second-order transitions with unknown critical
exponents, etc. �see reviews in Ref. �1��. One of the most
studied systems is the stacked triangular antiferromagnet
�STA�: the antiferromagnetic �AF� interaction between
nearest-neighbor �NN� spins on the triangular lattice causes a
very strong frustration. It is impossible �1� to fully satisfy the
three AF bond interactions on each equilateral triangle. The
g.s. configuration of both Heisenberg and XY models is the
well-known 120° structure. The cases of XY �N=2� and
Heisenberg �N=3� spins on the STA have been intensively
studied since 1987. For details, see, for example, the review
by Delamotte et al. �2�. Let us briefly recall here some main
historical developments. Kawamura �3,4� has conjectured by

a two-loop RG analysis and Monte Carlo �MC� simulations
that the transition in XY and Heisenberg models belong each
to a new universality class in dimension d=3. Since then,
there have been many other calculations and simulations
with contradictory results. For example, Azaria et al. �5� sug-
gested from a nonlinear � model that if the transition is not
of first order or mean-field tricritical, then it should be O�4�
universality. Numerical simulations �6–8�, however, did not
confirm these conjectures. Antonenko et al. �9� went further
in a four-loop RG calculation with a Borel resummation
technique. They concluded that the transition is of first order.
From 2000, Tissier and co-workers �10–12� have carried out
a nonperturbative RG study of frustrated magnets for any
dimension between two and four. They recovered all known
perturbative one-loop results in two and four dimensions as
well as for the infinite spin-component number N→�. They
determined Nc�d� for all d and found Nc�d=3�=5.1 below
which the transition is of first order in contradiction with the
conjecture of the existence of a new chiral universality class
by Kawamura �3,4�. They explained why theories and simu-
lations have encountered so far many difficulties by the ex-
istence of a whole region in the flow diagram in which the
flow is slow: the first-order character for N=2,3 is so weak
that the transition has a second-order aspect with “pseud-
ocritical” exponents. They calculated these pseudoexponents
and found that they coincided with some experimental data.
While this scenario is very coherent, we note that in this
nonperturbative RG technique, the real Hamiltonian is trun-
cated at the beginning and replaced by an effective one.
However, as will be seen in this paper, the nonperturbative
results are well confirmed.

Let us recall some results on the XY case. Early MC re-
sults on the XY STA have been reviewed by Loison �13�.
Until 2003, all numerical simulations found a second-order
transition with exponents. A numerical breakthrough has
been realized with the results of Itakura �14� who used an
improved MC RG scheme to investigate the RG flow of the
effective Hamiltonian used in field-theoretical studies for the
XY STA. He found that the XY STA exhibits a clear first-
order behavior and there are no chiral fixed points of RG
flow for N=2. In 2004, Peles et al. �15� used a continuous
model to study the XY STA by MC simulations. They found
evidence of a first-order transition. In 2006, Kanki et al. �16�,*Corresponding author. diep@u-cergy.fr
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using a microcanonical MC method, found a first-order sig-
nature of the XY STA. Bekhechi et al. �17� used in 2006 a
new MC technique called “short-time dynamics” to show
that the critical exponents � and � of the model are nonuni-
versal with respect to a parameter which does not change the
system symmetry. This is inconsistent with a second-order
transition. Therefore they concluded, by exclusion, that the
transition in the XY STA should be weakly of first order.

While these recent simulations have demonstrated evi-
dence of first-order transition for the XY STA in agreement
with the nonperturbative RG analysis, they might suffer one
or two uncertain aspects: the work of Itakura �14� used a
truncated Hamiltonian, the work of Peles et al. �15� used
standard MC methods with a risk of critical slowing down,
the work of Kanki et al. �16� used a traditional microcanoni-
cal MC technique with a uncertainty on a sufficient covering
of microscopic states, and the work of Bekhechi et al. �17�,
although being able to get rid of the critical slowing down,
gives only indirect evidence of the first-order character. Us-
ing a very-high-performance technique for weak first-order
transitions, the so-called Wang-Landau flat-histogram
method �18�, we have recently carried out simulations on the
XY STA. We have found clearly a first-order transition in that
system, confirming results of other authors and putting an
end to the controversy that which has lasted for 20 years
�19�.

For the Heisenberg case, Itakura �14� found, as in the XY
case mentioned above, the absence of chiral fixed points of
RG flow. However, he could not find numerical evidence of
the first-order transition. He predicted that if the transition is
of first order for the Heisenberg spins, it should occur at
much larger lattice sizes, which he was not able to perform at
that time. Indirect evidence of the first-order character of the
Heisenberg case has been recently given by Zelli et al. �20�
using the short-time dynamics MC simulation: they found, as
for the XY case �17� discussed above, a nonuniversal behav-
ior of the critical exponents, which is inconsistent with a
second-order transition. Encouraged by the high performance
of the Wang-Landau method, we decided to study the
Heisenberg case in this work using the full Hamiltonian with
very large lattice sizes. As shown below, we find indeed a
first-order transition in this case.

The paper is organized as follows. Section II is devoted to
the description of the model and the technical details of the
Wang-Landau �WL� methods as applied in the present paper.
Section III shows our results. Concluding remarks are given
in Sec. IV.

II. MONTE CARLO SIMULATION:
WANG-LANDAU ALGORITHM

We consider the stacking of triangular lattices in the z
direction. The spins are the classical Heisenberg model of
magnitude S=1. The Hamiltonian is given by

H = J�
�i,j�

Si · S j , �1�

where Si is the Heisenberg spin at the lattice site i and ��i,j�
indicates the sum over the NN spin pairs Si and Sj both in the
xy planes and in adjacent planes in the z direction. For sim-
plicity, we suppose the same antiferromagnetic interaction J
�J�0� for both in-plane NN pairs and interplane NN ones.

Recently, Wang and Landau �18� proposed a Monte Carlo
algorithm for classical statistical models. The algorithm uses
a random walk in energy space in order to obtained an accu-
rate estimate for the density of states, g�E�, which is defined
as the number of spin configurations for any given E. This
method is based on the fact that a flat energy histogram H�E�
is produced if the probability for the transition to a state of
energy E is proportional to g�E�−1. At the beginning of the
simulation, the density of states �DOS� is set equal to 1 for
all possible energies, g�E�=1. We begin a random walk in
energy space �E� by choosing a site randomly and flipping its
spin with a probability proportional to the inverse of the
momentary density of states. In general, if E and E� are the
energies before and after a spin is flipped, the transition
probability from E to E� is

p�E → E�� = min�g�E�/g�E��,1� . �2�

Each time an energy level E is visited, the DOS is modified
by a modification factor f �0 whether the spin flipped or
not—i.e., g�E�→g�E�f . At the beginning of the random
walk, the modification factor f can be as large as e1
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FIG. 1. Energy histogram for N=96 at Tc indicated in the
figure.
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FIG. 2. Energy histogram for N=120 at Tc indicated in the
figure.
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�2.718 281 8. A histogram H�E� records how often a state
of energy E is visited. Each time the energy histogram satis-
fies a certain “flatness” criterion, f is reduced according to
f →�f and H�E� is reset to zero for all energies. The reduc-
tion process of the modification factor f is repeated several
times until a final value f final which close enough to 1. The
histogram is considered as flat if

H�E� � x % � �H�E�	 �3�

for all energies, where x% is chosen between 70% and 95%
and �H�E�	 is the average histogram.

The thermodynamic quantities �18,21� can be evaluated
by �En	= 1

Z�EEng�E�exp�−E /kBT�, Cv= �E2	−�E	2

kBT2 , �Mn	
= 1

Z�EMng�E�exp�−E /kBT�, and 	= �M2	−�M	2

kBT , where Z is the
partition function defined by Z=�Eg�E�exp�−E /kBT�. The
canonical distribution at any temperature can be calculated
simply by P�E ,T�= 1

Zg�E�exp�−E /kBT�.
In this work, we consider a energy range of interest

�22,23� �Emin,Emax�. We divide this energy range to R sub-
intervals, and the minimum energy of each subinterval is
Emin

i for i=1,2 , . . . ,R, and maximum of the subinterval i is
Emax

i =Emin
i+1 +2
E, where 
E can be chosen large enough for

a smooth boundary between two subintervals. The Wang-
Landau algorithm is used to calculate the relative DOS of
each subinterval �Emin

i ,Emax
i � with the modification factor

f final=exp�10−9� and flatness criterion x% =95%. We reject
the suggested spin flip and do not update g�E� and the energy
histogram H�E� of the current energy level E if the spin-flip
trial would result in an energy outside the energy segment.
The DOS of the whole range is obtained by joining the DOS
of each subinterval �Emin

i +
E ,Emax
i −
E�.

III. RESULTS

We used a system size of N�N�N where N=72, 84, 90,
96, 108, 120, and 150. Periodic boundary conditions are used
in the three directions. J=1 is taken as the unit of energy in
the following.

The energy histograms for three representative sizes
N=96, N=120, and N=150 shown in Figs. 1–3, respectively.
As seen, for N=96, the peak is very broad, a signature of the

beginning of a double-maximum structure. The double peak
begins really at N=120. We note that the distance between
the two peaks—i.e., the latent heat—increases with increas-
ing size and reaches 0.0025 for N=150. This is to be com-
pared with the value �0.009 for N=120 in the XY case
�14–16,19�. Such a small value of the latent heat in the
Heisenberg case explains why the first-order character was
so difficult to observe. For increasing sizes, the minimum
between the peaks will be deepened to separate completely
the two peaks. Note that the double-peak structure is a suf-
ficient condition, not a necessary condition, for a first-order
transition. We give here the values of Tc for a few sizes: Tc
=0.957 74, 0.957 68, and 0.957 242 for N=96, 120, and 150,
respectively.

To explain why standard MC methods without histogram
monitoring �see, for example, Ref. �3�� fail to see the first-
order character, let us show in Fig. 4 the energy vs T ob-
tained by averaging over states obtained by the WL method
for N=96, 120, and 150. We see here that while the energy
histograms show already a signature of double-peak structure
at these large sizes, the average energy calculated by using
these WL histograms does not show a discontinuity: the av-
eraging over all states erases away the bimodal distribution
seen in the energy histogram at the transition temperature.
Therefore, care should be taken to avoid such problems due
to averaging in MC simulations when studying weak first-
order transitions.
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FIG. 5. Magnetization versus T for N=96,120,150.
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FIG. 3. Energy histogram for N=150 at Tc indicated in the
figure.
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FIG. 4. Energy versus T for N=96,120,150.

PHASE TRANSITION IN HEISENBERG STACKED … PHYSICAL REVIEW E 78, 031119 �2008�

031119-3



Figures 5 and 6 show the magnetization and the suscepti-
bility for three sizes N=96, 120, and 150. Again, here, one
does not see with one’s eye the discontinuity of the magne-
tization at the transition even for N=150. The averaging pro-
cedure erases, as for the energy, the detailed structure at the
transition.

At this stage it is interesting to make another check of the
first-order character: in a first-order transition, the maximum
of the susceptibility should scale with the system volume—
namely, Nd where d is the system dimension �24�. We plot in
Fig. 7, 	max versus N on a ln-ln scale. The slope of the
straight line is 
3.1, which is nothing but d within errors.
This is a very strong signature of a first-order transition.

IV. CONCLUDING REMARKS

We have studied in this paper the phase transition in the
Heisenberg STA by using the flat-histogram technique in-
vented by Wang and Landau. The method is very efficient
because it helps to overcome the extremely long transition
time between energy valleys in systems with a first-order
phase transition. We found that the transition becomes

clearly of first order only at a very large lattice size, confirm-
ing the result of a nonperturbative RG calculations using an
effective average Hamiltonian �2� and that using a short-time
MC simulation �20�. The present work hence puts definitely
an end to the long-standing controversial subject on the na-
ture of the phase transition in the Heisenberg STA. To con-
clude, let us emphasize that for complicated systems like this
one, methods well established for simple systems such as
ferromagnets may encounter difficulties in dealing with the
nature of the phase transition. Such difficulties can be solved
only with high-performance MC simulations as the one used
here and a detailed analysis of the flow behavior as suggested
by a nonperturbative RG calculation.
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